
PostgreSQL Tcl Interface
Documentation

The PostgreSQL Global Development Group

The Tcl Interface Group

PostgreSQL Tcl Interface Documentation
by The PostgreSQL Global Development Group, The Tcl Interface Group

Table of Contents
1. pgtcl - Tcl Binding Library...1

1.1. Overview ...1
1.2. Loading pgtcl into an Application ..2
1.3. pgtcl Command Reference..1

pg_connect..1
pg_dbinfo..1
pg_disconnect ...1
pg_conndefaults..1
pg_exec...1
pg_exec_prepared...1
pg_result ...1
pg_select ...1
pg_execute ..1
pg_listen ...1
pg_on_connection_loss ..1
pg_sendquery..1
pg_sendquery_prepared..1
pg_getresult ..1
pg_isbusy ..1
pg_blocking ..1
pg_cancelrequest ..1
pg_null_value_string ..1
pg_quote ...1
pg_escape_string ..1
pg_escape_bytea...1
pg_unescape_bytea...1
pg_lo_creat ...1
pg_lo_open ...1
pg_lo_close...1
pg_lo_read ..1
pg_lo_write...1
pg_lo_lseek...1
pg_lo_tell ..1
pg_lo_truncate ..1
pg_lo_unlink...1
pg_lo_import ..1
pg_lo_export...1

1.4. Tcl Namespace Support ..2
1.5. Connection/result handles as commands ..2
1.6. Example Program..2

iii

List of Tables
1-1. pgtcl Commands...1

iv

Chapter 1. pgtcl - Tcl Binding Library
pgtcl is a Tcl package for client programs to interface with PostgreSQL servers. It makes most of the
functionality of libpq available to Tcl scripts.

1.1. Overview
Table 1-1> gives an overview over the commands available in pgtcl. These commands are described
further on subsequent pages.

Table 1-1. pgtcl Commands

Command Namespace Command Description
pg_connect pg::connect open a connection to the server

pg_dbinfo pg::dbinfo returns the current
connection/result handles

pg_disconnect pg::disconnect close a connection to the server

pg_conndefaults pg::conndefaults get connection options and their
defaults

pg_exec pg::sqlexec send a command to the server

pg_exec_prepared pg::exec_prepared send a request to execute a
prepared statement, with
parameters

pg_result pg::result get information about a
command result

pg_select pg::select loop over the result of a query

pg_execute pg::execute send a query and optionally loop
over the results

pg_null_value_string pg::null_value_string set string to be returned for null
values in query results

pg_quote pg::quote escape a string for inclusion into
SQL statements

pg_escape_string pg::escape_string escape a binary string for
inclusion into SQL statements

pg_escape_bytea pg::escape_bytea escape a binary string for
inclusion into SQL statements

pg_unescape_bytea pg::unescape_bytea unescape a binary string from the
backend

pg_listen pg::listen set or change a callback for
asynchronous notification
messages

1

Chapter 1. pgtcl - Tcl Binding Library

Command Namespace Command Description
pg_on_connection_loss pg::on_connection_loss set or change a callback for

unexpected connection loss

pg_sendquery pg::sendquery issue pg_exec-style command
asynchronously

pg_sendquery_prepared pg::sendquery_prepared send an asynchronous request to
execute a prepared statement,
with parameters

pg_getresult pg::getresult check on results from
asynchronously issued
commands

pg_isbusy pg::isbusy check to see if the connection is
busy processing a query

pg_blocking pg::blocking set a database connection to be
either blocking or nonblocking

pg_cancelrequest pg::cancelrequest request PostgreSQL abandon
processing of the current
command

pg_lo_creat pg::lo_creat create a large object

pg_lo_open pg::lo_open open a large object

pg_lo_close pg::lo_close close a large object

pg_lo_read pg::lo_read read from a large object

pg_lo_write pg::lo_write write to a large object

pg_lo_lseek pg::lo_lseek seek to a position in a large
object

pg_lo_tell pg::lo_tell return the current seek position
of a large object

pg_lo_truncate pg::lo_truncate Truncate (or pad) a large object
to a specified length

pg_lo_unlink pg::lo_unlink delete a large object

pg_lo_import pg::lo_import import a large object from a file

pg_lo_export pg::lo_export export a large object to a file

The pg_lo_* commands are interfaces to the large object features of PostgreSQL. The functions are
designed to mimic the analogous file system functions in the standard Unix file system interface. The
pg_lo_* commands should be used within a BEGIN/COMMIT transaction block because the descriptor
returned by pg_lo_open is only valid for the current transaction. pg_lo_import and pg_lo_export

must be used in a BEGIN/COMMIT transaction block.

1.2. Loading pgtcl into an Application
Before using pgtcl commands, you must load the libpgtcl library into your Tcl application. This is

2

normally done with the package require command. Here is an example:

package require Pgtcl 1.5

package require loads the libpgtcl shared library, and loads any additional Tcl code that is
part of the Pgtcl package. Note that you can manually generate the pkgIndex.tcl file, or use make

pkgIndex.tcl or make pkgIndex.tcl-hand to have make generate it.

The old way to load the shared library is by using the Tcl load command. Here is an example:

load libpgtcl[info sharedlibextension]

Although this way of loading the shared library is deprecated, we continue to document it for the time
being, because it may help in debugging if, for some reason, package require is failing. The use of
info sharedlibextension is recommended in preference to hard-wiring .so or .sl or .dll into the
program.

The load command will fail unless the system’s dynamic loader knows where to look for the
libpgtcl shared library file. You may need to work with ldconfig, or set the environment variable
LD_LIBRARY_PATH, or use some equivalent facility for your platform to make it work. Refer to the
PostgreSQL installation instructions for more information.

libpgtcl in turn depends on the interface library libpq, so the dynamic loader must also be able to
find the libpq shared library. In practice this is seldom an issue, since both of these shared libraries are
normally stored in the same directory, but it can be a stumbling block in some configurations.

If you use a custom executable for your application, you might choose to statically bind libpgtcl into
the executable and thereby avoid the load command and the potential problems of dynamic linking. See
the source code for pgtclsh for an example.

1.3. pgtcl Command Reference

pg_connect

Name
pg_connect — open a connection to the server

Synopsis
pg_connect -conninfo connectOptions ?-connhandle connectionHandleName? ?-async bool?
pg_connect dbName ?-host hostName? ?-port portNumber? ?-tty tty? ?-options serverOptions? ?-connhandle connectionHandleName? ?-async bool?
pg_connect -connlist connectNameValueList ?-connhandle connectionHandleName? ?-async bool?

1

pg_connect

Description
pg_connect opens a connection to the PostgreSQL server.

Three syntaxes are available. In the older one, each possible option has a separate option switch in the
pg_connect command. In the newer form, a single option string is supplied that can contain multiple
option values. The third form takes the parameters as a name value Tcl list. pg_conndefaults can be
used to retrieve information about the available options in the newer syntax.

Arguments

New style

connectOptions

pg_connect opens a new database connection using the parameters taken from the
connectOptions string. Unlike the old-style usage of pg_connect, with the new-style
usage the parameter set can be extended without requiring changes to either libpgtcl or the
underlying libpq library, so use of the new style (or its nonexistent nonblocking analogues
pg_connect_start and pg_connect_poll) is preferred for new application programming.

The passed string can be empty to use all default parameters, or it can contain one or more parameter
settings separated by whitespace. Each parameter setting is in the form keyword = value. (To
write an empty value or a value containing spaces, surround it with single quotes, e.g., keyword =

’a value’. Single quotes and backslashes within the value must be escaped with a backslash, i.e.,
\’ and \\.) Spaces around the equal sign are optional.

The currently recognized parameter key words are:

host

Name of host to connect to. If this begins with a slash, it specifies Unix-domain communication
rather than TCP/IP communication; the value is the name of the directory in which the socket
file is stored. The default is to connect to a Unix-domain socket in /tmp.

hostaddr

Numeric IP address of host to connect to. This should be in the standard IPv4 address format,
e.g., 172.28.40.9. If your machine supports IPv6, you can also use IPv6 address format,
e.g., fe80::203:93ff:fedb:49bc. TCP/IP communication is always used when a nonempty
string is specified for this parameter.

Using hostaddr instead of host allows the application to avoid a host name lookup, which
may be important in applications with time constraints. However, Kerberos authentication re-
quires the host name. The following therefore applies: If host is specified without hostaddr,
a host name lookup occurs. If hostaddr is specified without host, the value for hostaddr
gives the remote address. When Kerberos is used, a reverse name query occurs to obtain the
host name for Kerberos. If both host and hostaddr are specified, the value for hostaddr
gives the remote address; the value for host is ignored, unless Kerberos is used, in which case
that value is used for Kerberos authentication. (Note that authentication is likely to fail if libpq
is passed a host name that is not the name of the machine at hostaddr.) Also, host rather than
hostaddr is used to identify the connection in $HOME/.pgpass.

2

pg_connect

Without either a host name or host address, Pgtcl will connect using a local Unix domain socket.

port

Port number to connect to at the server host, or socket file name extension for Unix-domain
connections.

dbname

The database name. Defaults to be the same as the user name.

user

PostgreSQL user name to connect as.

password

Password to be used if the server demands password authentication.

connect_timeout

Maximum wait for connection, in seconds (write as a decimal integer string). Zero or not spec-
ified means wait indefinitely. It is not recommended to use a timeout of less than 2 seconds.

options

Command-line options to be sent to the server.

tty

Ignored (formerly, this specified where to send server debug output).

sslmode

This option determines whether or with what priority an SSL connection will be negotiated with
the server. There are four modes: disable will attempt only an unencrypted SSL connection;
allow will negotiate, trying first a non-SSL connection, then if that fails, trying an SSL con-
nection; prefer (the default) will negotiate, trying first an SSL connection, then if that fails,
trying a regular non-SSL connection; require will try only an SSL connection.

If PostgreSQL is compiled without SSL support, using option require will cause an error,
and options allow and prefer will be tolerated but libpq will be unable to negotiate an SSL
connection.

requiressl

This option is deprecated in favor of the sslmode setting.

If set to 1, an SSL connection to the server is required (this is equivalent to sslmode require).
libpq will then refuse to connect if the server does not accept an SSL connection. If set to
0 (default), libpq will negotiate the connection type with the server (equivalent to sslmode

prefer). This option is only available if PostgreSQL is compiled with SSL support.

service

Service name to use for additional parameters. It specifies a service name in
pg_service.conf that holds additional connection parameters. This allows applications
to specify only a service name so connection parameters can be centrally maintained. See
PREFIX/share/pg_service.conf.sample for information on how to set up the file.

3

pg_connect

-connhandle connectionHandleName

Name to use for the connection handle, instead of pgtcl generating the name automatically.
Without the option, the name is auto-generated, prefixed with pgsql, and with a numeric id at
the end. This gives the programmer control over the name of the connection handle.

-async bool

Connect asyncronously if [bool] is true.

If any parameter is unspecified, then the corresponding environment variable (see libpq documenta-
tion in the PostgreSQL manual) is checked. If the environment variable is not set either, then built-in
defaults are used.

Old style

dbName

The name of the database to connect to.

-host hostName

The host name of the database server to connect to.

-port portNumber

The TCP port number of the database server to connect to.

-tty tty

A file or TTY for optional debug output from the server.

-options serverOptions

Additional configuration options to pass to the server.

-connhandle connectionHandleName

Name to use for the connection handle, instead of pgtcl generating the name automatically. Without
the option, the name is auto-generated, prefixed with pgsql, and with a numeric id at the end. This
gives the programmer control over the name of the connection handle.

-async bool

Connect asyncronously if [bool] is true.

Third style (most recent one added)

-connlist connectNameValuelist

pg_connect opens a new database connection using the parameters taken from the
connectNameValuelist list. The parameters are exactly the same for the New Style, but they are
stored as a Tcl list, instead of a string. The list is a name value pair, for example: [list host

localhost port 5400 dbname template1].

array set conninfo {
host 192.168.123.180
port 5801
dbname template1
user postgres

}

4

pg_connect

set conn [pg::connect -connlist [array get ::conninfo]]

-async bool

Connect asyncronously if [bool] is true.

-connhandle connectionHandleName

Name to use for the connection handle, instead of pgtcl generating the name automatically. Without
the option, the name is auto-generated, prefixed with pgsql, and with a numeric id at the end. This
gives the programmer control over the name of the connection handle.

Return Value
If successful, a handle for a database connection is returned. Handles start with the prefix pgsql.

5

pg_dbinfo

Name
pg_dbinfo — returns a list of current open connection/result handles

Synopsis
pg_dbinfo connections|results ?conn?

Description
pg_dbinfo returns a list of connection\result handles that are currently open. The first argument is either
connections or results. If the first argument is results, then a second argument needs to be present, specifyin
the connection.

Arguments

connections|results

Either specify connections if you want the connection handles, or results if you want the result
handles.

conn

The handle of the connection, if results if specified for the first argument.

Return Value
A Tcl list of connection handle names

1

pg_disconnect

Name
pg_disconnect — close a connection to the server

Synopsis
pg_disconnect conn

Description
pg_disconnect closes a connection to the PostgreSQL server.

Arguments

conn

The handle of the connection to be closed.

Return Value
None

1

pg_conndefaults

Name
pg_conndefaults — get connection options and their defaults

Synopsis
pg_conndefaults

Description
pg_conndefaults returns information about the connection options available in pg_connect

-conninfo and the current default value for each option.

Arguments
None

Return Value
The result is a list describing the possible connection options and their current default values. Each entry
in the list is a sublist of the format:

{optname label dispchar dispsize value}

where the optname is usable as an option in pg_connect -conninfo.

1

pg_exec

Name
pg_exec — send a command to the server

Synopsis
pg_exec conn commandString ?args?

Description
pg_exec submits a command to the PostgreSQL server and returns a result. Command result handles
start with the connection handle and add a period and a result number.

Note that lack of a Tcl error is not proof that the command succeeded! An error message returned by the
server will be processed as a command result with failure status, not by generating a Tcl error in pg_exec.

Arguments

conn

The handle of the connection on which to execute the command.

commandString

The SQL command to execute.

args

For PostgreSQL versions greater than 7.4, args consists of zero or more optional values that can be
inserted, unquoted, into the SQL statement using $-style substitution.

Return Value
A result handle. A Tcl error will be returned if pgtcl was unable to obtain a server response. Otherwise, a
command result object is created and a handle for it is returned. This handle can be passed to pg_result
to obtain the results of the command.

Example

pg_exec $conn {select * from table1 where id = $1 and user = $2} $id $user

1

pg_exec_prepared

Name
pg_exec_prepared — send a request to execute a prepared SQL statement to the server

Synopsis
pg_exec_prepared conn statementName ?args?

Description
pg_exec_prepared submits a command to the PostgreSQL server and returns a result.

pg_exec_prepared functions identically to pg_exec, except that it operates using statements prepared
by the PREPARE SQL command.

Note that prepared statements are only support under PostgreSQL 7.4 and later.

Arguments

conn

The handle of the connection on which to execute the command.

statementName

The name of the prepared statement to execute.

args

args consists of zero or more optional values that can be inserted, unquoted, into the SQL statement
using $-style substitution.

Return Value
A result handle. See pg_exec for details.

Example

pg_exec $conn {prepare insert_people
(varchar, varchar, varchar, varchar, varchar, varchar)
as insert into people values ($1, $2, $3, $4, $5, $6);}

pg_exec_prepared $conn insert_people $email $name $address $city $state $zip

1

pg_exec_prepared

2

pg_result

Name
pg_result — get information about a command result

Synopsis
pg_result resultHandle resultOption

Description
pg_result returns information about a command result created by a prior pg_exec.

You can keep a command result around for as long as you need it, but when you are done with it, be sure to
free it by executing pg_result -clear. Otherwise, you have a memory leak, and pgtcl will eventually
start complaining that you have created too many command result objects.

Arguments

resultHandle

The handle of the command result.

resultOption

One of the following options, specifying which piece of result information to return:

-status

The status of the result.

-error ?diagCode?

The error message, if the status indicates an error, otherwise an empty string.

diagCode, if specified, requests data for a specific diagnostic code:

severity

The severity; the field contents are ERROR, FATAL, or PANIC, in an error message, or
WARNING, NOTICE, DEBUG, INFO, or LOG, in a notice message, or a localized translation of
one of these.

sqlstate

The SQLSTATE code for the error. (See PostgreSQL manual Appendix A).

primary

The primary human-readable error message (typically one line).

1

pg_result

detail

An optional secondary error message carrying more detail abhout the problem, which may
run to multiple lines.

hint

An optional suggestion about what to do about the problem. This is intended to differ from
detail in that it offers advice (potentially inappropriate) rather than hard facts.

The result may run to multiple lines.

position

A string containing a decimal integer indicating an error cursor position as an index into
the original statement string.

The first character has index 1, and positions are measured in characters not bytes.

internal_position

This is the same as "position", but it is used when the cursor position refers to an internally
generated command rather than the one submitted by the client.

The first character has index 1, and positions are measured in characters not bytes.

internal_query

This is the text of a failed internally generated command. This could be, for example, a
SQL query issued by a PL/pgSQL function.

context

An indication of the context in which the error occurred. Presently this includes a call stack
traceback of active PL functions. The trace is one entry per line, most recent first.

file

The filename of the source code location where the error was reported.

line

The line number of the source code location where the error was reported.

function

The name of the source code function reporting the error.

-foreach arrayName tclCode

Iterates through each row of the result, filling arrayName with the columns and their values
and executing tclCode for each row in turn. Null columns will be not be present in the array.

-conn

The connection that produced the result.

-oid

If the command was an INSERT, the OID of the inserted row, otherwise 0.

-numTuples

The number of rows (tuples) returned by the query.

2

pg_result

-cmdTuples

The number of rows (tuples) affected by the command. (This is similar to -numTuples but
relevant to INSERT and UPDATE commands.)

-numAttrs

The number of columns (attributes) in each row.

-assign arrayName

Assign the results to an array, using subscripts of the form (rowNumber, columnName).

-foreach arrayName code

For each resulting row assigns the results to the named array, using subscripts matching the
column names, then executes the code body.

-assignbyidx arrayName ?appendstr?

Assign the results to an array using the values of the first column and the names of the re-
maining column as keys. If appendstr is given then it is appended to each key. In short,
all but the first column of each row are stored into the array, using subscripts of the form
(firstColumnValue, columnNameAppendStr).

-getTuple rowNumber

Returns the columns of the indicated row in a list. Row numbers start at zero.

-tupleArray rowNumber arrayName

Stores the columns of the row in array arrayName, indexed by column names. Row numbers
start at zero. If a field’s value is null, sets an empty string or the default string, if a default string
has been defined.

-tupleArrayWithoutNulls rowNumber arrayName

Stores the columns of the row in array arrayName, indexed by column names. Row numbers
start at zero. If a field’s value is null, unsets the column from the array.

-attributes

Returns a list of the names of the columns in the result.

-lAttributes

Returns a list of sublists, {name typeOid typeSize} for each column.

-list

Returns one list containing all the data returned by the query.

-llist

Returns a list of lists, where each embedded list represents a tuple in the result.

-dict

Returns a dict object with the results. This needs to have dictionary support built into Tcl (Tcl
8.5), and is experimental right now, since Tcl 8.5 has not been release yet, and the API could
change. In order to enable this, you need to add -DHAVE_TCL_NEWDICTOBJ to the Makefile
in the DEFS variable.

3

pg_result

-null_value_string ?string?

Defines or retrieves the string that will be returned for null values in query results. Defaults to
whatever was set by pg_null_value_string but can be set here and, in this case, affects only
this query result.

-clear

Clear the command result object.

Return Value
The result depends on the selected option, as described above.

4

pg_select

Name
pg_select — loop over the result of a query

Synopsis
pg_select ?-rowbyrow? ?-nodotfields? ?-withoutnulls? conn commandString arrayVar procedure

Description
pg_select submits a query (SELECT statement) to the PostgreSQL server and executes a given chunk of
code for each row in the result. The commandString must be a SELECT statement; anything else returns
an error. The arrayVar variable is an array name used in the loop. For each row, arrayVar is filled in
with the row values, using the column names as the array indices. Then the procedure is executed.

In addition to the column values, the following special entries are made in the array (unless the [-
nodotfields] flag is provided):

.headers

A list of the column names returned by the query.

.numcols

The number of columns returned by the query.

.tupno

The current row number, starting at zero and incrementing for each iteration of the loop body.

Arguments

[-rowbyrow]

Perform the select in row-by-row mode. This means that the code block is called immediately results
become available, rather than waiting for the query to complete.

[-nodotfields]

Suppress generation of the pseudo-fields .headers, .numcols, and .tupno.

[-withoutnulls]

If specified null columns will be unset from the array rather than being defined and containing the
null string, typically an empty string.

1

pg_select

conn

The handle of the connection on which to execute the query.

commandString

The SQL query to execute.

arrayVar

An array variable for returned rows.

procedure

The procedure to run for each returned row.

Return Value
None

Examples
This examples assumes that the table table1 has columns control and name (and perhaps others):

pg_select $pgconn "SELECT * FROM table1;" array {
puts [format "%5d %s" $array(control) $array(name)]

}

2

pg_execute

Name
pg_execute — send a query and optionally loop over the results

Synopsis
pg_execute ?-array arrayVar? ?-oid oidVar? conn commandString ?procedure?

Description
pg_execute submits a command to the PostgreSQL server.

If the command is not a SELECT statement, the number of rows affected by the command is returned. If
the command is an INSERT statement and a single row is inserted, the OID of the inserted row is stored
in the variable oidVar if the optional -oid argument is supplied.

If the command is a SELECT statement, then, for each row in the result, the row values are stored in the
arrayVar variable, if supplied, using the column names as the array indices, else in variables named by
the column names, and then the optional procedure is executed if supplied. (Omitting the procedure
probably makes sense only if the query will return a single row.) The number of rows selected is returned.

The procedure can use the Tcl commands break, continue, and return with the expected behavior.
Note that if the procedure executes return, then pg_execute does not return the number of affected
rows.

pg_execute is a newer function which provides a superset of the features of pg_select and can replace
pg_exec in many cases where access to the result handle is not needed.

For server-handled errors, pg_execute will throw a Tcl error and return a two-element list. The first
element is an error code, such as PGRES_FATAL_ERROR, and the second element is the server error text.
For more serious errors, such as failure to communicate with the server, pg_execute will throw a Tcl
error and return just the error message text.

Arguments

-array arrayVar

Specifies the name of an array variable where result rows are stored, indexed by the column names.
This is ignored if commandString is not a SELECT statement.

-oid oidVar

Specifies the name of a variable into which the OID from an INSERT statement will be stored.

conn

The handle of the connection on which to execute the command.

1

pg_execute

commandString

The SQL command to execute.

procedure

Optional procedure to execute for each result row of a SELECT statement.

Return Value
The number of rows affected or returned by the command.

Examples
In the following examples, error checking with catch has been omitted for clarity.

Insert a row and save the OID in result_oid:

pg_execute -oid result_oid $pgconn "INSERT INTO mytable VALUES (1);"

Print the columns item and value from each row:

pg_execute -array d $pgconn "SELECT item, value FROM mytable;" {
puts "Item=$d(item) Value=$d(value)"

}

Find the maximum and minimum values and store them in $s(max) and $s(min):

pg_execute -array s $pgconn "SELECT max(value) AS max, min(value) AS min FROM mytable;"

Find the maximum and minimum values and store them in $max and $min:

pg_execute $pgconn "SELECT max(value) AS max, min(value) AS min FROM mytable;"

2

pg_listen

Name
pg_listen — set or change a callback for asynchronous notification messages

Synopsis
pg_listen conn notifyName ?callbackCommand?

Description
pg_listen creates, changes, or cancels a request to listen for asynchronous notification messages from
the PostgreSQL server. With a callbackCommand parameter, the request is established, or the command
string of an already existing request is replaced. With no callbackCommand parameter, a prior request
is canceled.

After a pg_listen request is established, the specified command string is executed whenever a notifi-
cation message bearing the given name arrives from the server. This occurs when any PostgreSQL client
application issues a NOTIFY command referencing that name. The command string is executed from the
Tcl idle loop. That is the normal idle state of an application written with Tk. In non-Tk Tcl shells, you can
execute update or vwait to cause the idle loop to be entered.

You should not invoke the SQL statements LISTEN or UNLISTEN directly when using pg_listen. pgtcl
takes care of issuing those statements for you. But if you want to send a notification message yourself,
invoke the SQL NOTIFY statement using pg_exec.

Arguments

conn

The handle of the connection on which to listen for notifications.

notifyName

The name of the notification condition to start or stop listening to.

callbackCommand

If present, provides the command string to execute when a matching notification arrives.

Return Value
None

1

pg_on_connection_loss

Name
pg_on_connection_loss — set or change a callback for unexpected connection loss

Synopsis
pg_on_connection_loss conn ?callbackCommand?

Description
pg_on_connection_loss creates, changes, or cancels a request to execute a callback command if an
unexpected loss of connection to the database occurs. With a callbackCommand parameter, the request is
established, or the command string of an already existing request is replaced. With no callbackCommand
parameter, a prior request is canceled.

The callback command string is executed from the Tcl idle loop. That is the normal idle state of an
application written with Tk. In non-Tk Tcl shells, you can execute update or vwait to cause the idle
loop to be entered.

Arguments

conn

The handle to watch for connection losses.

callbackCommand

If present, provides the command string to execute when connection loss is detected.

Return Value
None

1

pg_sendquery

Name
pg_sendquery — send a query string to the backend connection without waiting for a result

Synopsis
pg_sendquery conn commandString

Description
pg_sendquery submits a command to the PostgreSQL server. This function works like pg_exec, except
that it does not return a result. Rather, the command is issued to the backend asynchronously.

The result is either an error message or nothing. An empty return indicates that the command was dis-
patched to the backend.

Arguments

conn

The handle of the connection on which to execute the command.

commandString

The SQL command to execute.

Return Value
A Tcl error will be returned if pgtcl was unable to issue the command. Otherwise, an empty string will
be return. It is up to the developer to use pg_getresult to obtain results from commands issued with
pg_sendquery.

1

pg_sendquery_prepared

Name
pg_sendquery_prepared — send a request to execute a prepared statement to the backend
connection, without waiting for a result

Synopsis
pg_sendquery_prepared conn statementName ?args?

Description
pg_sendquery_prepared submits a command to the PostgreSQL server. This function works like
pg_exec, except that it does not return a result. Rather, the command is issued to the backend asyn-
chronously.

The result is either an error message or nothing. An empty return indicates that the command was dis-
patched to the backend.

Arguments

conn

The handle of the connection on which to execute the command.

statementName

The name of the prepared SQL statement to execute asynchronously.

args

args consists of zero or more optional values that can be inserted, unquoted, into the SQL statement
using $-style substitution.

Return Value
A Tcl error will be returned if pgtcl was unable to issue the command. Otherwise, an empty string will
be return. It is up to the developer to use pg_getresult to obtain results from commands issued with
pg_sendquery.

1

pg_getresult

Name
pg_getresult — process asychronous results

Synopsis
pg_getresult conn

Description
pg_getresult checks to see if any commands issued by pg_sendquery have completed.

This will return the same sort of result handle that pg_exec returns.

If there is no query currently being processed or all of the results have been obtained, pg_getresult
returns nothing.

Arguments

conn

The handle of a connection to the database to which asynchronous requests are being issued.

Return Value
If a query result is available, a command result object is returned. This handle can be passed to pg_result
to obtain the results of the command.

If there is no query currently being processed or all of the results have been obtained, pg_getresult
returns nothing.

1

pg_isbusy

Name
pg_isbusy — see if a query is busy

Synopsis
pg_isbusy conn

Description
pg_isbusy checks to see if the backend is busy handling a query or not.

Arguments

conn

The handle of a connection to the database in which the large object exists.

Return Value
Returns 1 if the backend is busy, in which case a call to pg_getresult would block, otherwise it returns
0.

1

pg_blocking

Name
pg_blocking — see or set whether or not a connection is set to blocking or nonblocking

Synopsis
pg_blocking conn ?mode?

Description
pg_blocking can set the connection to either blocking or nonblocking, and it can see which way the
connection is currently set.

Arguments

conn

The handle of a connection to the database in which the large object exists.

mode

If present, sets the mode of the connection to nonblocking if 0. Otherwise it sets the connection to
blocking.

Return Value
Returns nothing if called with the mode argument. Otherwise it returns 1 if the connection is set for
blocking, or 0 if the connection is set for nonblocking.

1

pg_cancelrequest

Name
pg_cancelrequest — request that PostgreSQL abandon processing of the current command

Synopsis
pg_cancelrequest conn

Description
pg_cancelrequest requests that the processing of the current command be abandoned.

Arguments

conn

The handle of a connection to the database in which the large object exists.

Return Value
Returns nothing if the command was successfully dispatched or if no query was being processed. Other-
wise, returns an error.

1

pg_null_value_string

Name
pg_null_value_string — define a value to be returned for NULL fields distinct from the default
value of an empty string.

Synopsis
pg_null_value_string ?string?

Description
pg_null_value_string sets or retrieves a string to be returned in query results for fields whose value
is NULL, making it possible to distinguish between NULL values an values that are not null but are
comprised of an empty string. Without setting an alternative null value with this or with pg_result’s -
null_value_string, it is impossible to tell the difference between a NULL field value and one that is not
null but empty.

Arguments

string

The string to be set that will be returned for null fields.

Return Value
Returns the string that is currently being returned for null fields. It will be the passed string value if one
was passed, or, otherwise, the value currently being used.

1

pg_quote

Name
pg_quote — escapes a string for inclusion into SQL statements

Synopsis
pg_quote [-null] [connection] string

Description
pg_quote quotes a string and escapes single quotes and backslashes within the string, making it safe for
inclusion into SQL statements.

If a connection is provided, the connection is used to customize the quoting process for the database
referenced by the connection.

If the [-null] option is provided, then if the text matches the null string (either the empty string, or the
null string specified in the connection) then the SQL keyword NULL is returned, rather than a quoted
string.

If you’re doing something like

pg_exec $conn "insert into foo values (’$name’);"

and name contains text includeing an unescaped single quote, such as Bob’s House, the insert will fail.
Passing value strings through pg_quote make sure they can be used as values and stuff in PostgreSQL.

pg_exec $conn "insert into foo values ([pg_quote $name]);"

...will make sure that any special characters that occur in name, such as single quote or backslash, will be
properly quoted.

Arguments

string

The string to be escaped.

Return Value
Returns the string, escaped for inclusion into SQL queries. Note that it adds a set of single quotes around
the outside of the string as well.

1

pg_escape_string

Name
pg_escape_string — escapes a string for inclusion into SQL statements. This is the same as
pg_quote. It was added for consistency.

Synopsis
pg_escape_string string

Description
pg_escape_string quotes a string and escapes single quotes and backslashes within the string, making
it safe for inclusion into SQL statements.

If you’re doing something like

pg_exec $conn "insert into foo values (’$name’);"

and name contains text includeing an unescaped single quote, such as Bob’s House, the insert will fail.
Passing value strings through pg_escape_string make sure they can be used as values and stuff in
PostgreSQL.

pg_exec $conn "insert into foo values ([pg_escape_string $name]);"

...will make sure that any special characters that occur in name, such as single quote or backslash, will be
properly quoted.

Arguments

string

The string to be escaped.

Return Value
Returns the string, escaped for inclusion into SQL queries. Note that it adds a set of single quotes around
the outside of the string as well.

1

pg_escape_bytea

Name
pg_escape_bytea — escapes a binary string for inclusion into SQL statements.

Synopsis
pg_escape_bytea string

Description
pg_escape_bytea escapes a binary string, making it safe for inclusion into SQL statements.

pg_exec $conn "insert into foo values ([pg_escape_binary $name]);"

Arguments

binary_string

The binary string to be escaped.

Return Value
Returns the binary string, escaped for inclusion into SQL queries.

1

pg_unescape_bytea

Name
pg_unescape_bytea — unescapes a binary string.

Synopsis
pg_unescape_bytea string

Description
pg_unescape_bytea unescapes a binary string, when retrieving from the backend.

Arguments

binary_string

The string to be unescaped.

Return Value
Returns the binary string.

1

pg_lo_creat

Name
pg_lo_creat — create a large object

Synopsis
pg_lo_creat conn mode

Description
pg_lo_creat creates a large object.

Arguments

conn

The handle of a connection to the database in which to create the large object.

mode

The access mode for the large object. It can be any or’ing together of INV_READ and INV_WRITE.
The “or” operator is |. For example:

[pg_lo_creat $conn "INV_READ|INV_WRITE"]

Return Value
The OID of the large object created.

1

pg_lo_open

Name
pg_lo_open — open a large object

Synopsis
pg_lo_open conn loid mode

Description
pg_lo_open opens a large object.

Arguments

conn

The handle of a connection to the database in which the large object exists.

loid

The OID of the large object.

mode

Specifies the access mode for the large object. Mode can be either r, w, or rw.

Return Value
A descriptor for use in later large-object commands.

1

pg_lo_close

Name
pg_lo_close — close a large object

Synopsis
pg_lo_close conn descriptor

Description
pg_lo_close closes a large object.

Arguments

conn

The handle of a connection to the database in which the large object exists.

descriptor

A descriptor for the large object from pg_lo_open.

Return Value
None

1

pg_lo_read

Name
pg_lo_read — read from a large object

Synopsis
pg_lo_read conn descriptor bufVar len

Description
pg_lo_read reads at most len bytes from a large object into a variable named bufVar.

Arguments

conn

The handle of a connection to the database in which the large object exists.

descriptor

A descriptor for the large object from pg_lo_open.

bufVar

The name of a buffer variable to contain the large object segment.

len

The maximum number of bytes to read.

Return Value
The number of bytes actually read is returned; this could be less than the number requested if the end of
the large object is reached first. In event of an error, the return value is negative.

1

pg_lo_write

Name
pg_lo_write — write to a large object

Synopsis
pg_lo_write conn descriptor buf len

Description
pg_lo_write writes at most len bytes from a variable buf to a large object.

Arguments

conn

The handle of a connection to the database in which the large object exists.

descriptor

A descriptor for the large object from pg_lo_open.

buf

The string to write to the large object (not a variable name, but the value itself).

len

The maximum number of bytes to write. The number written will be the smaller of this value and the
length of the string.

Return Value
The number of bytes actually written is returned; this will ordinarily be the same as the number requested.
In event of an error, the return value is negative.

1

pg_lo_lseek

Name
pg_lo_lseek — seek to a position of a large object

Synopsis
pg_lo_lseek conn descriptor offset whence

Description
pg_lo_lseek moves the current read/write position to offset bytes from the position specified by
whence.

Arguments

conn

The handle of a connection to the database in which the large object exists.

descriptor

A descriptor for the large object from pg_lo_open.

offset

The new seek position in bytes.

whence

Specified from where to calculate the new seek position: SEEK_CUR (from current position),
SEEK_END (from end), or SEEK_SET (from start).

Return Value
None

1

pg_lo_tell

Name
pg_lo_tell — return the current seek position of a large object

Synopsis
pg_lo_tell conn descriptor

Description
pg_lo_tell returns the current read/write position in bytes from the beginning of the large object.

Arguments

conn

The handle of a connection to the database in which the large object exists.

descriptor

A descriptor for the large object from pg_lo_open.

Return Value
A zero-based offset in bytes suitable for input to pg_lo_lseek.

1

pg_lo_truncate

Name
pg_lo_truncate — Truncate a large object to a given length

Synopsis
pg_lo_truncate conn descriptor length

Description
pg_lo_truncate truncates the specified large object to the given length. If the length is greater than the
current large object length, the large object is extended with null bytes.

Arguments

conn

The handle of a connection to the database in which the large object exists.

descriptor

A descriptor for the large object from pg_lo_open.

length

The length to which the large object is to be truncated or padded.

Return Value
A zero-based offset in bytes suitable for input to pg_lo_lseek.

1

pg_lo_unlink

Name
pg_lo_unlink — delete a large object

Synopsis
pg_lo_unlink conn loid

Description
pg_lo_unlink deletes the specified large object.

Arguments

conn

The handle of a connection to the database in which the large object exists.

loid

The OID of the large object.

Return Value
None

1

pg_lo_import

Name
pg_lo_import — import a large object from a file

Synopsis
pg_lo_import conn filename

Description
pg_lo_import reads the specified file and places the contents into a new large object.

Arguments

conn

The handle of a connection to the database in which to create the large object.

filename

Specified the file from which to import the data.

Return Value
The OID of the large object created.

Notes
pg_lo_import must be called within a BEGIN/COMMIT transaction block.

1

pg_lo_export

Name
pg_lo_export — export a large object to a file

Synopsis
pg_lo_export conn loid filename

Description
pg_lo_export writes the specified large object into a file.

Arguments

conn

The handle of a connection to the database in which the large object exists.

loid

The OID of the large object.

filename

Specifies the file into which the data is to be exported.

Return Value
None

Notes
pg_lo_export must be called within a BEGIN/COMMIT transaction block.

1

Chapter 1. pgtcl - Tcl Binding Library

1.4. Tcl Namespace Support
With version 1.5, there is proper Tcl namespace support built into pgtcl. There are commands now that
mirror the pg_ commands, but use the Tcl namespace convention. For example, there are commands
now called: pg::connect, pg::result, etc. However, due to this, there are some incapabilities. For example,
pg_exec has a counterpart called pg::sqlexec, since doing a namespace import ::pg::* would clobber the
builtin Tcl commmand exec. The old command names, pg_*, are still there for backwards compatibility,
but might be phased out eventually.

So, one can use Tcl’s namespace mechanisms now with pgtcl. For eaxmple, you can import that names-
pace:

namespace import ::pg::*

set conn [connect template1 -host $host -port $port]

1.5. Connection/result handles as commands
Starting with version 1.5, you can use the connection/result handle as a Tcl command. What this means is
that when a handle for a connection or result is generated, a corresponding Tcl command is also generate.
For example, you can do the following:

set conn [pg::connect template1 -host $host -port $port]
set res [$conn exec "SELECT datname FROM pg_database ORDER BY datname;"]
set datnames [$res -list]
$res -clear
rename $conn {} ;# or $conn disconnect

Note that deleting the command (rename $conn {}), has the same effect as pg::result $res

-clear (if it is a result handle), and pg::disconnect (if it is a connection handle). Also, if that
command gets overloaded with a proc definition, then that has the same effect as deleting the command.

1.6. Example Program
Example 1-1> shows a small example of how to use the pgtcl commands.

Example 1-1. pgtcl Example Program

getDBs :
get the names of all the databases at a given host and port number
with the defaults being the localhost and port 5432
return them in alphabetical order
proc getDBs { {host "localhost"} {port "5432"} } {

datnames is the list to be result
set conn [pg_connect template1 -host $host -port $port]
set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY datname;"]
set ntups [pg_result $res -numTuples]
for {set i 0} {$i < $ntups} {incr i} {

2

Chapter 1. pgtcl - Tcl Binding Library

lappend datnames [pg_result $res -getTuple $i]
}
pg_result $res -clear
pg_disconnect $conn
return $datnames

}

OR an alternative

proc getDBs { {host "localhost"} {port "5432"} } {
datnames is the list to be result
set conn [pg_connect template1 -host $host -port $port]
set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY datname;"]

set datnames [pg_result $res -list]
pg_result $res -clear
pg_disconnect $conn
return $datnames

}

OR an alternative

proc getDBs { {host "localhost"} {port "5432"} } {
datnames is the list to be result
set conn [pg_connect template1 -host $host -port $port]
set res [$conn exec "SELECT datname FROM pg_database ORDER BY datname;"]

set datnames [$res -dict]
$res -clear
rename $conn {}
return [dict get $datnames]

}

3

	PostgreSQL Tcl Interface Documentation
	Table of Contents
	List of Tables
	Chapter 1. pgtcl Tcl Binding Library
	1.1. Overview
	1.2. Loading pgtcl into an Application
	1.3. pgtcl Command Reference
	pgconnect
	Name
	Synopsis
	Description
	Arguments
	New style
	Old style
	Third style (most recent one added)

	Return Value

	pgdbinfo
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgdisconnect
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgconndefaults
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgexec
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Example

	pgexecprepared
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Example

	pgresult
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgselect
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	pgexecute
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	pglisten
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgonconnectionloss
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgsendquery
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgsendqueryprepared
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pggetresult
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgisbusy
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgblocking
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgcancelrequest
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgnullvaluestring
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgquote
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgescapestring
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgescapebytea
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgunescapebytea
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pglocreat
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgloopen
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgloclose
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgloread
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pglowrite
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pglolseek
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pglotell
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pglotruncate
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pglounlink
	Name
	Synopsis
	Description
	Arguments
	Return Value

	pgloimport
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	pgloexport
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	1.4. Tcl Namespace Support
	1.5. Connection/result handles as commands
	1.6. Example Program

