|
|||
1. Solaris TCPIP Protocol Suite (Overview) 2. Planning an IPv4 Addressing Scheme (Tasks 3. Planning an IPv6 Addressing Scheme (Overview) IPv6 Neighbor Discovery Protocol Overview 4. Planning an IPv6 Network (Tasks) 5. Configuring TCP/IP Network Services and IPv4 Addressing (Tasks) 6. Administering Network Interfaces (Tasks) 7. Enabling IPv6 on a Network (Tasks) 8. Administering a TCP/IP Network (Tasks) 9. Troubleshooting Network Problems (Tasks) 10. TCP/IP and IPv4 in Depth (Reference) 12. About Solaris DHCP (Overview) 13. Planning for DHCP Service (Tasks) 14. Configuring the DHCP Service (Tasks) 15. Administering DHCP (Tasks) 16. Configuring and Administering DHCP Clients 17. Troubleshooting DHCP (Reference) 18. DHCP Commands and Files (Reference) 19. IP Security Architecture (Overview) 21. IP Security Architecture (Reference) 22. Internet Key Exchange (Overview) 24. Internet Key Exchange (Reference) 25. Solaris IP Filter (Overview) 28. Administering Mobile IP (Tasks) 29. Mobile IP Files and Commands (Reference) 30. Introducing IPMP (Overview) 31. Administering IPMP (Tasks) Part VI IP Quality of Service (IPQoS) 32. Introducing IPQoS (Overview) 33. Planning for an IPQoS-Enabled Network (Tasks) 34. Creating the IPQoS Configuration File (Tasks) 35. Starting and Maintaining IPQoS (Tasks) 36. Using Flow Accounting and Statistics Gathering (Tasks) |
IPv6 Address AutoconfigurationA major feature of IPv6 is a host's ability to autoconfigure an interface. Through Neighbor Discovery, the host locates an IPv6 router on the local link and requests a site prefix. The host does the following, as part of the autoconfiguration process:
Note - Stateful autoconfiguration is achieved through DHCPv6. DHCPv6 is not supported in the current Solaris release. Stateless Autoconfiguration OverviewStateless autoconfiguration requires no manual configuration of hosts, minimal (if any) configuration of routers, and no additional servers. The stateless mechanism enables a host to generate its own addresses. The stateless mechanism uses local information as well as nonlocal information that is advertised by routers to generate the addresses. You can implement temporary addresses for an interface, which are also autoconfigured. You enable a temporary address token for one or more interfaces on a host. However, unlike standard, autoconfigured IPv6 addresses, a temporary address consists of the site prefix and a randomly generated 64 bit number. This random number becomes the interface ID portion of the IPv6 address. A link-local address is not generated with the temporary address as the interface ID. Routers advertise all prefixes that have been assigned on the link. IPv6 hosts use Neighbor Discovery to obtain a subnet prefix from a local router. Hosts automatically create IPv6 addresses by combining the subnet prefix with an interface ID that is generated from an interface's MAC address. In the absence of routers, a host can generate only link-local addresses. Link-local addresses can only be used for communication with nodes on the same link. Note - Do not use stateless autoconfiguration to create the IPv6 addresses of servers. Hosts automatically generate interface IDs that are based on hardware-specific information during autoconfiguration. The current interface ID could become invalid if the existing interface is swapped for a new interface. |
||
|