|
|||
1. Solaris TCPIP Protocol Suite (Overview) 2. Planning an IPv4 Addressing Scheme (Tasks 3. Planning an IPv6 Addressing Scheme (Overview) 4. Planning an IPv6 Network (Tasks) 5. Configuring TCP/IP Network Services and IPv4 Addressing (Tasks) 6. Administering Network Interfaces (Tasks) 7. Enabling IPv6 on a Network (Tasks) 8. Administering a TCP/IP Network (Tasks) 9. Troubleshooting Network Problems (Tasks) 10. TCP/IP and IPv4 in Depth (Reference) inetd Internet Services Daemon Network Databases and the nsswitch.conf File 12. About Solaris DHCP (Overview) 13. Planning for DHCP Service (Tasks) 14. Configuring the DHCP Service (Tasks) 15. Administering DHCP (Tasks) 16. Configuring and Administering DHCP Clients 17. Troubleshooting DHCP (Reference) 18. DHCP Commands and Files (Reference) 19. IP Security Architecture (Overview) 21. IP Security Architecture (Reference) 22. Internet Key Exchange (Overview) 24. Internet Key Exchange (Reference) 25. Solaris IP Filter (Overview) 28. Administering Mobile IP (Tasks) 29. Mobile IP Files and Commands (Reference) 30. Introducing IPMP (Overview) 31. Administering IPMP (Tasks) Part VI IP Quality of Service (IPQoS) 32. Introducing IPQoS (Overview) 33. Planning for an IPQoS-Enabled Network (Tasks) 34. Creating the IPQoS Configuration File (Tasks) 35. Starting and Maintaining IPQoS (Tasks) 36. Using Flow Accounting and Statistics Gathering (Tasks) |
Routing Protocols in the Solaris OSSolaris system software supports two routing protocols: Routing Information Protocol (RIP) and ICMP Router Discovery (RDISC). RIP and RDISC are both standard TCP/IP protocols. Routing Information Protocol (RIP)RIP is implemented by in.routed, the routing daemon, which automatically starts when the system boots. When run on a router with the s option specified, in.routed fills the kernel routing table with a route to every reachable network and advertises “reachability” through all network interfaces. When run on a host with the q option specified, in.routed extracts routing information but does not advertise reachability. On hosts, routing information can be extracted in two ways:
ICMP Router Discovery (RDISC) ProtocolHosts use RDISC to obtain routing information from routers. Thus, when hosts are running RDISC, routers must also run another protocol, such as RIP, in order to exchange router information. RDISC is implemented by in.routed, which should run on both routers and hosts. On hosts, in.routed uses RDISC to discover default routes from routers that advertise themselves through RDISC. On routers, in.routed uses RDISC to advertise default routes to hosts on directly-connected networks. See the in.routed(1M) man page and the gateways(4) man page. |
||
|