
librsync programmer’s manual 1.0pre DRAFT

Martin Pool

20th July 2004

Contents

1

1 Introduction

The librsync library implements network delta-compression of streams and files.

librsync was originally used in the rproxy experiment in delta-compression for HTTP. One
popular application is rdiff-backup, which uses rdiff deltas for incremental backups.

rdiff is a command-line scriptable interface to librsync. The rdiff manual explains the concepts
of network deltas and should be read first.

librsync can be downloaded from http://librsync.sourcefrog.net/ and used, modified and redis-
tributed under the terms of the GNU Lesser General Public License (version 2.1 or later). That
licence also applies to this manual.

The library provides four basic operations:

gensig Generate a signature describing a file, from which deltas may later be generated.

loadsig Load a signature into memory.

delta Calculate a delta from an in-memory signature to a new file, and write the resulting
delta to a file.

patch Read a delta from a file and apply it to a basis file, producing an output file.

These correspond to the basic operations of rdiff, except that loading a signature is done as
a separate operation from calculating a delta.

librsync provides a high-level interface for applications that just want to make and use signatures
and deltas with a single function call.

Alternatively there is a streaming interface which can support blocking or non-blocking IO and
processing of encapsulated, encrypted or compressed streams. Each operation in progress is
represented by an rs job t opaque structure, called a job object. Any number of jobs can be in
progress at the same time. Through this interface the application creates a job object, supplies
IO callbacks, and then repeated calls into librsync to run the job.

2 Interface conventions

The public interface to librsync is defined in librsync1.h. All external symbols have the prefix
rs , or RS in the case of preprocessor symbols.

Symbols beginning with rs (double underscore) are private and should not be called from
outside the library.

3 Return codes

Almost all functions in librsync return a value of the enumerated type rs result. The values
include:

RS DONE == 0 Processing is complete.

RS BLOCKED The operation cannot proceed at the moment.

2

http://rdiff-backup.stanford.edu/
http://librsync.sourcefrog.net/

RS RUNNING The job is still running. (This should never be returned to the application.)

RS IO ERROR Input/output error.

RS SYNTAX ERROR Command-line syntax error.

RS MEM ERROR Out of memory or similar conditions.

RS INPUT ENDED Input ended abruptly, typically because of a truncated file or dropped network
connection.

RS BAD MAGIC Wrong magic number at the start of an input file. The input file is probably not
in the right format, or perhaps is from an incompatible version of librsync.

RS UNIMPLEMENTED The author is lazy.

RS CORRUPT Unbelievable value in input stream.

RS INTERNAL ERROR Probably a library bug, or perhaps invalid input.

RS PARAM ERROR Bad value passed to library. Probably an application bug.

RS EOF Reading from a file reached end-of-file.

There are a few cases where bugs in the library may cause it to abort the process. These should
never occur once bugs have been eliminated from the application and library.

Given an rs result value, rs strerror returns a read-only human-readable string describing
the error:

char const *rs strerror(rs result result);

(The current code always returns an English string, but it should probably be returned in the
message current locale.)

4 Processing whole files

librsync provides a high-level API for processing whole files. These functions open files, process
the entire contents, and return an overall result.

Some applications do not require fine-grained control over IO, but rather just want to process
a whole file with a single call. librsync provides “whole-file” functionality to do exactly that.
The whole-file operations are the core of the rdiff program.

rdiff loadsig files generates a signature of input file and writes it to output file. The
signature is generated using the given block and strong sum:

rs result

rs loadsig files(const char *sig file,

rs signature t **sig out);

rs result

rs files sig(const char *input file,

const char *output file,

3

size t block len,

size t strong len,

rs stats t *stats)

rs result

rs delta files(rs signature t *sig,

const char *input file,

const char *output file);

The signature is generated using the given block and strong sum lengths. Default values are
used if zero is given for these two parameters.

If stats is not null, statistics are returned in the given statistics structure.

5 Debug messages

librsync can optionally produce a error/debug trace while it runs. Error messages supplement
return codes by describing in more detail what went wrong. Debug messages are useful when
debugging librsync or applications that call it.

The default configuration is that warning and error messages are written to stderr. This should
be appropriate for many applications. If it is not, the level and destination of messages may
be changed.

Messages are passed out of librsync through a trace callback which is passed a severity and
message string. The type for this callback is:

typedef void rs trace fn t(int level, char const *msg);

The default trace function is:

void rs trace stderr(int level, char const *msg);

The trace callback may be changed at runtime:

void rs trace to(rs trace fn t *trace fn);

Messages from librsync are labelled with a severity indicator of enumerated type rs loglevel:

RS LOG CRIT Critical error such as hitting an unimplemented case in librsync. librsync may
abort the process if it cannot return safely.

RS LOG ERR Serious error. The current operation has probably failed.

RS LOG WARNING A problem was encountered but it has not interrupted processing.

RS LOG INFO Information on normal progress. May be suitable for a --verbose mode.

RS LOG DEBUG Very detailed internal debug information. Useful when debugging librsync or
programs that call it.

The application may also specify a minimum severity of interest. The default level is RS LOG INFO.
Messages lower than the specified level are discarded without being passed to the trace callback:

void rs trace set level(rs loglevel level);

4

6 IO callbacks

librsync jobs use IO callbacks to read and write files. These callbacks might write the data
directly to a file or network connection, or they might do some additional work such as com-
pression or encryption.

Callbacks are passed a baton, which is chosen by the application when setting up the job. The
baton can hold context or state for the callback, such as a file handle or descriptor.

There are three types of callbacks, for input, output, and a special one for random-access reads
of the basis file when patching. Different types of job use different callbacks. The callbacks
are assigned when the job is created and cannot be changed. (If the behaviour of the callback
needs to change during the job, that can be controlled by variables in the baton.)

There are three function typedefs for these callbacks:

typedef rs result rs cb read(void *baton,

char *buf,

size t buf len,

size t *bytes read);

typedef rs result rs cb basis(void *baton,

char *buf,

size t buf len,

off t offset,

size t *bytes read);

typedef rs result rs cb write(void *baton,

const char *buf,

size t buf len,

size t *bytes written);

IO callbacks are passed the address of a buffer allocated by librsync which they read data into
or write data from, plus the length of the buffer.

Callbacks return an rs result value to indicate success, an error, or being blocked. Call-
backs must set the appropriate bytes read or bytes written to indicate how much data was
processed. They may process only part of the requested data, in which case they still return
RS DONE. In this case librsync will call the callback again later until it either completes, fails,
or blocks.

When a read callback reaches end-of-file and can return no more data, it should return RS EOF.
In this case no data should be returned; the output value of bytes read is ignored. If the callback
has just a little data left before end of file, then it should return that data with RS DONE. On
the next call, unless the file has grown, it can return RS EOF.

If the callbacks return an error, that error will typically be passed back to the application.

IO callbacks are only called from within rs job run, never spontaneously. Different callbacks
may be called several times in a single invocation of rs job run.

6.1 stdio callbacks

librsync provides predefined IO callbacks that wrap the C stdio facility. The baton argument
for all these functions is a FILE*:

5

rs result rs cb read stdio(void*,

char *buf,

size t buf len,

size t *bytes read);

rs result rs cb basis stdio(void *,

char *buf,

size t buf len,

off t offset,

size t *bytes read);

rs result rs cb write stdio(void *voidp,

const char *buf,

size t buf len,

size t *bytes written);

There is also a utility function that wraps fopen. It reports any errors through the librsync
error log, and translates return values. It also treats - as stdin or stdout as appropriate.

rs result rs stdio open(const char *file,

const char *mode,

FILE **filp out);

7 Creating Jobs

Jobs are created by calling rs gensig begin, rs delta begin, rs loadsig begin or rs patch begin.
These functions create a new job object, which can then be run using rs job run.

rs result rs gensig begin(rs job t **job out,

size t block len,

size t strong sum len,

rs cb read *read cb, void *read baton,

rs cb write *write cb, void *write baton);

A newly allocated job object is stored in *job out.

The patch job accepts the patch as input, and uses a callback to look up blocks within the
basis file.

You must configure read, write and basis callbacks after creating the job but before it is run.

After creating the job, call rs job run to feed in patch data and retrieve output data. When
the job is complete, call rs job finish to dispose of the job object and free memory.

8 Running Jobs

The work of the operation is done when the application calls rs job run. This includes reading
from input files via the callback, running the rsync algorithms, and writing output.

6

The IO callbacks are only called from inside rs job run. If any of them return an error,
rs job run will generally return the same error.

When librsync needs to do input or output, it calls one of the callback functions. rs job run

returns when the operation has completed or failed, or when one of the IO callbacks has blocked.

rs job run will usually be called in a loop, perhaps alternating librsync processing with other
application functions.

rs result rs job run(rs job t *job);

9 Deleting Jobs

A job is deleted and its memory freed up using rs job free:

rs result rs job free(rs job t *job);

This is typically called when the job has completed or failed. It can be called earlier if the
application decides it wants to cancell processing.

rs job free does not delete the output of the job, such as the sumset loaded into memory. It
does delete the job’s statistics.

10 Non-blocking IO

The librsync interface allows non-blocking streaming processing of data. This means that the
library will accept input and produce output when it suits the application: the library should
not ever block waiting for IO. It is intended to be usable in threaded programs, but does not
require threading. librsync should work with programs that do either blocking or nonblocking
IO.

Normally callbacks will read/write the whole buffer when they’re called, but in some cases they
might not be able to process all of it, or perhaps not process any at all. This might happen if
the callbacks are connected to a nonblocking socket. Either of two things can happen in this
case. If the callback returns RS BLOCKED, then rs job run will also return RS BLOCKED shortly.

When an IO callback blocks, it is the responsibility of the application to work out when it will
be able to make progress and therefore when it is worth calling rs job run again. Typically
this involves a mechanism like poll or select to wait for the file descriptor to be ready.

11 Job Statistics

Jobs accumulate statistics while they run, such as the number of input and output bytes. The
particular statistics collected depend on the type of job.

const rs stats t * rs job statistics(rs job t *job);

7

rs job statistics returns a pointer to statistics for the job. The pointer is valid throughout
the life of the job, until the job is freed. The statistics are updated during processing and can
be used to measure progress.

Statistics can be written to the trace file in human-readable form:

int rs log stats(rs stats t const *stats);

Statistics are held in a structure referenced by the job object. The statistics are kept up-to-date
as the job runs and so can be used for progress indicators.

12 Utility functions

Some additional functions are used internally and also exposed in the API:

• encoding/decoding binary data: rs base64, rs unbase64, rs hexify.

• MD4 message digests: rs mdfour, rs mdfour begin, rs mdfour update, rs mdfour result.

8

