|
|||
Part I Designing Device Drivers for the Solaris Platform 1. Overview of Solaris Device Drivers 2. Solaris Kernel and Device Tree 5. Managing Events and Queueing Tasks 7. Device Access: Programmed I/O 10. Mapping Device and Kernel Memory 14. Layered Driver Interface (LDI) Part II Designing Specific Kinds of Device Drivers 15. Drivers for Character Devices Block Driver Structure Overview Block Device Autoconfiguration Synchronous Data Transfers (Block Drivers) Asynchronous Data Transfers (Block Drivers) dump() and print() Entry Points 18. SCSI Host Bus Adapter Drivers 19. Drivers for Network Devices Part III Building a Device Driver 21. Compiling, Loading, Packaging, and Testing Drivers 22. Debugging, Testing, and Tuning Device Drivers 23. Recommended Coding Practices B. Summary of Solaris DDI/DKI Services C. Making a Device Driver 64-Bit Ready |
Controlling Device AccessThis section describes the entry points for open() and close() functions in block device drivers. See Chapter 15, Drivers for Character Devices for more information on open(9E) and close(9E). open() Entry Point (Block Drivers)The open(9E) entry point is used to gain access to a given device. The open(9E) routine of a block driver is called when a user thread issues an open(2) or mount(2) system call on a block special file associated with the minor device, or when a layered driver calls open(9E). See File I/O for more information. The open() entry point should check for the following conditions:
The following example demonstrates a block driver open(9E) entry point. Example 16-2 Block Driver open(9E) Routinestatic int xxopen(dev_t *devp, int flags, int otyp, cred_t *credp) { minor_t instance; struct xxstate *xsp; instance = getminor(*devp); xsp = ddi_get_soft_state(statep, instance); if (xsp == NULL) return (ENXIO); mutex_enter(&xsp->mu); /* * only honor FEXCL. If a regular open or a layered open * is still outstanding on the device, the exclusive open * must fail. */ if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) { mutex_exit(&xsp->mu); return (EAGAIN); } switch (otyp) { case OTYP_LYR: xsp->nlayered++; break; case OTYP_BLK: xsp->open = 1; break; default: mutex_exit(&xsp->mu); return (EINVAL); } mutex_exit(&xsp->mu); return (0); } The otyp argument is used to specify the type of open on the device. OTYP_BLK is the typical open type for a block device. A device can be opened several times with otyp set to OTYP_BLK. close(9E) is called only once when the final close of type OTYP_BLK has occurred for the device. otyp is set to OTYP_LYR if the device is being used as a layered device. For every open of type OTYP_LYR, the layering driver issues a corresponding close of type OTYP_LYR. The example keeps track of each type of open so the driver can determine when the device is not being used in close(9E). close() Entry Point (Block Drivers)The close(9E) entry point uses the same arguments as open(9E) with one exception. dev is the device number rather than a pointer to the device number. The close() routine should verify otyp in the same way as was described for the open(9E) entry point. In the following example, close() must determine when the device can really be closed. Closing is affected by the number of block opens and layered opens. Example 16-3 Block Device close(9E) Routinestatic int xxclose(dev_t dev, int flag, int otyp, cred_t *credp) { minor_t instance; struct xxstate *xsp; instance = getminor(dev); xsp = ddi_get_soft_state(statep, instance); if (xsp == NULL) return (ENXIO); mutex_enter(&xsp->mu); switch (otyp) { case OTYP_LYR: xsp->nlayered--; break; case OTYP_BLK: xsp->open = 0; break; default: mutex_exit(&xsp->mu); return (EINVAL); } if (xsp->open || xsp->nlayered) { /* not done yet */ mutex_exit(&xsp->mu); return (0); } /* cleanup (rewind tape, free memory, etc.) */ /* wait for I/O to drain */ mutex_exit(&xsp->mu); return (0); } strategy() Entry PointThe strategy(9E) entry point is used to read and write data buffers to and from a block device. The name strategy refers to the fact that this entry point might implement some optimal strategy for ordering requests to the device. strategy(9E) can be written to process one request at a time, that is, a synchronous transfer. strategy() can also be written to queue multiple requests to the device, as in an asynchronous transfer. When choosing a method, the abilities and limitations of the device should be taken into account. The strategy(9E) routine is passed a pointer to a buf(9S) structure. This structure describes the transfer request, and contains status information on return. buf(9S) and strategy(9E) are the focus of block device operations. buf StructureThe following buf structure members are important to block drivers: int b_flags; /* Buffer Status */ struct buf *av_forw; /* Driver work list link */ struct buf *av_back; /* Driver work list link */ size_t b_bcount; /* # of bytes to transfer */ union { caddr_t b_addr; /* Buffer's virtual address */ } b_un; daddr_t b_blkno; /* Block number on device */ diskaddr_t b_lblkno; /* Expanded block number on device */ size_t b_resid; /* # of bytes not transferred after error */ int b_error; /* Expanded error field */ void *b_private; /* “opaque” driver private area */ dev_t b_edev; /* expanded dev field */ where:
bp_mapin StructureA buf structure pointer can be passed into the device driver's strategy(9E) routine. However, the data buffer referred to by b_un.b_addr is not necessarily mapped in the kernel's address space. Therefore, the driver cannot directly access the data. Most block-oriented devices have DMA capability and therefore do not need to access the data buffer directly. Instead, these devices use the DMA mapping routines to enable the device's DMA engine to do the data transfer. For details about using DMA, see Chapter 9, Direct Memory Access (DMA). If a driver needs to access the data buffer directly, that driver must first map the buffer into the kernel's address space by using bp_mapin(9F). bp_mapout(9F) should be used when the driver no longer needs to access the data directly. Caution - bp_mapout(9F) should only be called on buffers that have been allocated and are owned by the device driver. bp_mapout() must not be called on buffers that are passed to the driver through the strategy(9E) entry point, such as a file system. bp_mapin(9F) does not keep a reference count. bp_mapout(9F) removes any kernel mapping on which a layer over the device driver might rely. |
||
|