|
|||
2. Types, Operators, and Expressions 8. Type and Constant Definitions 34. Statically Defined Tracing for User Applications |
ExamplesThe following example script displays pertinent information for every I/O as it's issued: #pragma D option quiet BEGIN { printf("%10s %58s %2s\n", "DEVICE", "FILE", "RW"); } io:::start { printf("%10s %58s %2s\n", args[1]->dev_statname, args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W"); } The output of the example when cold-starting Acrobat Reader on an x86 laptop system resembles the following example: # dtrace -s ./iosnoop.d DEVICE FILE RW cmdk0 /opt/Acrobat4/bin/acroread R cmdk0 /opt/Acrobat4/bin/acroread R cmdk0 <unknown> R cmdk0 /opt/Acrobat4/Reader/AcroVersion R cmdk0 <unknown> R cmdk0 <unknown> R cmdk0 <none> R cmdk0 <unknown> R cmdk0 <none> R cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R cmdk0 <none> R cmdk0 <unknown> R cmdk0 <unknown> R cmdk0 <unknown> R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 <none> R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 <unknown> R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 <none> R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R cmdk0 <unknown> R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R cmdk0 <none> R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R ... The <none> entries in the output indicate that the I/O doesn't correspond to the data in any particular file: these I/Os are due to metadata of one form or another. The <unknown> entries in the output indicate that the pathname for the file is not known. This situation is relatively rare. You could make the example script slightly more sophisticated by using an associative array to track the time spent on each I/O, as shown in the following example: #pragma D option quiet BEGIN { printf("%10s %58s %2s %7s\n", "DEVICE", "FILE", "RW", "MS"); } io:::start { start[args[0]->b_edev, args[0]->b_blkno] = timestamp; } io:::done /start[args[0]->b_edev, args[0]->b_blkno]/ { this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno]; printf("%10s %58s %2s %3d.%03d\n", args[1]->dev_statname, args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W", this->elapsed / 10000000, (this->elapsed / 1000) % 1000); start[args[0]->b_edev, args[0]->b_blkno] = 0; } The output of the above example while hot-plugging a USB storage device into an otherwise idle x86 laptop system is shown in the following example: # dtrace -s ./iotime.d DEVICE FILE RW MS cmdk0 /kernel/drv/scsa2usb R 24.781 cmdk0 /kernel/drv/scsa2usb R 25.208 cmdk0 /var/adm/messages W 25.981 cmdk0 /kernel/drv/scsa2usb R 5.448 cmdk0 <none> W 4.172 cmdk0 /kernel/drv/scsa2usb R 2.620 cmdk0 /var/adm/messages W 0.252 cmdk0 <unknown> R 3.213 cmdk0 <none> W 3.011 cmdk0 <unknown> R 2.197 cmdk0 /var/adm/messages W 2.680 cmdk0 <none> W 0.436 cmdk0 /var/adm/messages W 0.542 cmdk0 <none> W 0.339 cmdk0 /var/adm/messages W 0.414 cmdk0 <none> W 0.344 cmdk0 /var/adm/messages W 0.361 cmdk0 <none> W 0.315 cmdk0 /var/adm/messages W 0.421 cmdk0 <none> W 0.349 cmdk0 <none> R 1.524 cmdk0 <unknown> R 3.648 cmdk0 /usr/lib/librcm.so.1 R 2.553 cmdk0 /usr/lib/librcm.so.1 R 1.332 cmdk0 /usr/lib/librcm.so.1 R 0.222 cmdk0 /usr/lib/librcm.so.1 R 0.228 cmdk0 /usr/lib/librcm.so.1 R 0.927 cmdk0 <none> R 1.189 ... cmdk0 /usr/lib/devfsadm/linkmod R 1.110 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_audio_link.so R 1.763 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_audio_link.so R 0.161 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so R 0.819 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so R 0.168 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_disk_link.so R 0.886 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_disk_link.so R 0.185 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so R 0.778 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so R 0.166 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so R 1.634 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so R 0.163 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_md_link.so R 0.477 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_md_link.so R 0.161 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.198 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.168 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.247 cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link_i386.so R 1.735 ... You can make several observations about the mechanics of the system based on this output. First, note the long time to perform the first several I/Os, which took about 25 milliseconds each. This time might have been due to the cmdk0 device having been power managed on the laptop. Second, observe the I/O due to the scsa2usb(7D) driver loading to deal with USB Mass Storage device. Third, note the writes to /var/adm/messages as the device is reported. Finally, observe the reading of the device link generators (the files ending in link.so) , which presumably deal with the new device. The io provider enables in-depth understanding of iostat(1M) output. Assume you observe iostat output similar to the following example: extended device statistics device r/s w/s kr/s kw/s wait actv svc_t %w %b cmdk0 8.0 0.0 399.8 0.0 0.0 0.0 0.8 0 1 sd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 sd2 0.0 109.0 0.0 435.9 0.0 1.0 8.9 0 97 nfs1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 nfs2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 You can use the iotime.d script to see these I/Os as they happen, as shown in the following example: DEVICE FILE RW MS sd2 /mnt/archives.tar W 0.856 sd2 /mnt/archives.tar W 0.729 sd2 /mnt/archives.tar W 0.890 sd2 /mnt/archives.tar W 0.759 sd2 /mnt/archives.tar W 0.884 sd2 /mnt/archives.tar W 0.746 sd2 /mnt/archives.tar W 0.891 sd2 /mnt/archives.tar W 0.760 sd2 /mnt/archives.tar W 0.889 cmdk0 /export/archives/archives.tar R 0.827 sd2 /mnt/archives.tar W 0.537 sd2 /mnt/archives.tar W 0.887 sd2 /mnt/archives.tar W 0.763 sd2 /mnt/archives.tar W 0.878 sd2 /mnt/archives.tar W 0.751 sd2 /mnt/archives.tar W 0.884 sd2 /mnt/archives.tar W 0.760 sd2 /mnt/archives.tar W 3.994 sd2 /mnt/archives.tar W 0.653 sd2 /mnt/archives.tar W 0.896 sd2 /mnt/archives.tar W 0.975 sd2 /mnt/archives.tar W 1.405 sd2 /mnt/archives.tar W 0.724 sd2 /mnt/archives.tar W 1.841 cmdk0 /export/archives/archives.tar R 0.549 sd2 /mnt/archives.tar W 0.543 sd2 /mnt/archives.tar W 0.863 sd2 /mnt/archives.tar W 0.734 sd2 /mnt/archives.tar W 0.859 sd2 /mnt/archives.tar W 0.754 sd2 /mnt/archives.tar W 0.914 sd2 /mnt/archives.tar W 0.751 sd2 /mnt/archives.tar W 0.902 sd2 /mnt/archives.tar W 0.735 sd2 /mnt/archives.tar W 0.908 sd2 /mnt/archives.tar W 0.753 This output appears to show that the file archives.tar is being read from cmdk0 (in /export/archives), and being written to device sd2 (in /mnt). This existence of two files named archives.tar that are being operated on separately in parallel seems unlikely. To investigate further, you can aggregate on device, application, process ID and bytes transferred, as shown in the following example: #pragma D option quiet io:::start { @[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount); } END { printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES"); printa("%10s %20s %10d %15@d\n", @); } Running this script for a few seconds results in output similar to the following example: # dtrace -s ./whoio.d ^C DEVICE APP PID BYTES cmdk0 cp 790 1515520 sd2 cp 790 1527808 This output shows that this activity is a copy of the file archives.tar from one device to another. This conclusion leads to another natural question: is one of these devices faster than the other? Which device acts as the limiter on the copy? To answer these questions, you need to know the effective throughput of each device rather than the number of bytes per second each device is transferring. You can determine the throughput with the following example script: #pragma D option quiet io:::start { start[args[0]->b_edev, args[0]->b_blkno] = timestamp; } io:::done /start[args[0]->b_edev, args[0]->b_blkno]/ { /* * We want to get an idea of our throughput to this device in KB/sec. * What we have, however, is nanoseconds and bytes. That is we want * to calculate: * * bytes / 1024 * ------------------------ * nanoseconds / 1000000000 * * But we can't calculate this using integer arithmetic without losing * precision (the denomenator, for one, is between 0 and 1 for nearly * all I/Os). So we restate the fraction, and cancel: * * bytes 1000000000 bytes 976562 * --------- * ------------- = --------- * ------------- * 1024 nanoseconds 1 nanoseconds * * This is easy to calculate using integer arithmetic; this is what * we do below. */ this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno]; @[args[1]->dev_statname, args[1]->dev_pathname] = quantize((args[0]->b_bcount * 976562) / this->elapsed); start[args[0]->b_edev, args[0]->b_blkno] = 0; } END { printa(" %s (%s)\n%@d\n", @); } Running the example script for several seconds yields the following output: sd2 (/devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0:r) value ------------- Distribution ------------- count 32 | 0 64 | 3 128 | 1 256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2257 512 | 1 1024 | 0 cmdk0 (/devices/pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0:a) value ------------- Distribution ------------- count 128 | 0 256 | 1 512 | 0 1024 | 2 2048 | 0 4096 | 2 8192 |@@@@@@@@@@@@@@@@@@ 172 16384 |@@@@@ 52 32768 |@@@@@@@@@@@ 108 65536 |@@@ 34 131072 | 0 The output shows that sd2 is clearly the limiting device. The sd2 throughput is between 256K/sec and 512K/sec, while cmdk0 is delivering I/O at anywhere from 8 MB/second to over 64 MB/second. The script prints out both the name as seen in iostat, and the full path of the device. To find out more about the device, you could specify the device path to prtconf, as shown in the following example: # prtconf -v /devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0 disk, instance #2 (driver name: sd) Driver properties: name='lba-access-ok' type=boolean dev=(29,128) name='removable-media' type=boolean dev=none name='pm-components' type=string items=3 dev=none value='NAME=spindle-motor' + '0=off' + '1=on' name='pm-hardware-state' type=string items=1 dev=none value='needs-suspend-resume' name='ddi-failfast-supported' type=boolean dev=none name='ddi-kernel-ioctl' type=boolean dev=none Hardware properties: name='inquiry-revision-id' type=string items=1 value='1.04' name='inquiry-product-id' type=string items=1 value='STORAGE DEVICE' name='inquiry-vendor-id' type=string items=1 value='Generic' name='inquiry-device-type' type=int items=1 value=00000000 name='usb' type=boolean name='compatible' type=string items=1 value='sd' name='lun' type=int items=1 value=00000000 name='target' type=int items=1 value=00000000 As the emphasized terms indicate, this device is a removable USB storage device. The examples in this section have explored all I/O requests. However, you might only be interested in one type of request. The following example tracks the directories in which writes are occurring, along with the applications performing the writes: #pragma D option quiet io:::start /args[0]->b_flags & B_WRITE/ { @[execname, args[2]->fi_dirname] = count(); } END { printf("%20s %51s %5s\n", "WHO", "WHERE", "COUNT"); printa("%20s %51s %5@d\n", @); } Running this example script on a desktop workload for a period of time yields some interesting results, as shown in the following example output: # dtrace -s ./whowrite.d ^C WHO WHERE COUNT su /var/adm 1 fsflush /etc 1 fsflush / 1 fsflush /var/log 1 fsflush /export/bmc/lisa 1 esd /export/bmc/.phoenix/default/78cxczuy.slt/Cache 1 fsflush /export/bmc/.phoenix 1 esd /export/bmc/.phoenix/default/78cxczuy.slt 1 vi /var/tmp 2 vi /etc 2 cat <none> 2 bash / 2 vi <none> 3 xterm /var/adm 3 fsflush /export/bmc 7 MozillaFirebird <none> 8 vim /export/bmc 9 MozillaFirebird /export/bmc 10 fsflush /var/adm 11 devfsadm /dev 14 ksh <none> 71 ksh /export/bmc 71 fsflush /export/bmc/.phoenix/default/78cxczuy.slt 119 MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt 119 fsflush <none> 211 MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt/Cache 591 fsflush /export/bmc/.phoenix/default/78cxczuy.slt/Cache 666 sched <none> 2385 As the output indicates, virtually all writes are associated with the Mozilla Firebird cache. The writes labeled <none> are likely due to writes associated with the UFS log, writes that are themselves induced by other writes in the filesystem. See ufs(7FS) for details on logging. This example shows how to use the io provider to discover a problem at a much higher layer of software. In this case, the script has revealed a configuration problem: the web browser would induce much less I/O (and quite likely none at all) if its cache were in a directory in a tmpfs(7FS) filesystem. The previous examples have used only the start and done probes. You can use the wait-start and wait-done probes to understand why applications block for I/O – and for how long. The following example script uses both io probes and sched probes (see Chapter 26, sched Provider) to derive CPU time compared to I/O wait time for the StarOffice software: #pragma D option quiet sched:::on-cpu /execname == "soffice.bin"/ { self->on = vtimestamp; } sched:::off-cpu /self->on/ { @time["<on cpu>"] = sum(vtimestamp - self->on); self->on = 0; } io:::wait-start /execname == "soffice.bin"/ { self->wait = timestamp; } io:::wait-done /self->wait/ { @io[args[2]->fi_name] = sum(timestamp - self->wait); @time["<I/O wait>"] = sum(timestamp - self->wait); self->wait = 0; } END { printf("Time breakdown (milliseconds):\n"); normalize(@time, 1000000); printa(" %-50s %15@d\n", @time); printf("\nI/O wait breakdown (milliseconds):\n"); normalize(@io, 1000000); printa(" %-50s %15@d\n", @io); } Running the example script during a cold start of the StarOffice software yields the following output: Time breakdown (milliseconds): <on cpu> 3634 <I/O wait> 13114 I/O wait breakdown (milliseconds): soffice.tmp 0 Office 0 unorc 0 sbasic.cfg 0 en 0 smath.cfg 0 toolboxlayout.xml 0 sdraw.cfg 0 swriter.cfg 0 Linguistic.dat 0 scalc.cfg 0 Views.dat 0 Store.dat 0 META-INF 0 Common.xml.tmp 0 afm 0 libsimreg.so 1 xiiimp.so.2 3 outline 4 Inet.dat 6 fontmetric 6 ... libucb1.so 44 libj641si_g.so 46 libX11.so.4 46 liblng641si.so 48 swriter.db 53 libwrp641si.so 53 liblocaledata_ascii.so 56 libi18npool641si.so 65 libdbtools2.so 69 ofa64101.res 74 libxcr641si.so 82 libucpchelp1.so 83 libsot641si.so 86 libcppuhelper3C52.so 98 libfwl641si.so 100 libsb641si.so 104 libcomphelp2.so 105 libxo641si.so 106 libucpfile1.so 110 libcppu.so.3 111 sw64101.res 114 libdb-3.2.so 119 libtk641si.so 126 libdtransX11641si.so 127 libgo641si.so 132 libfwe641si.so 150 libi18n641si.so 152 libfwi641si.so 154 libso641si.so 173 libpsp641si.so 186 libtl641si.so 189 <unknown> 189 libucbhelper1C52.so 195 libutl641si.so 213 libofa641si.so 216 libfwk641si.so 229 libsvl641si.so 261 libcfgmgr2.so 368 libsvt641si.so 373 libvcl641si.so 741 libsvx641si.so 885 libsfx641si.so 993 <none> 1096 libsw641si.so 1365 applicat.rdb 1580 As this output shows, much of the cold StarOffice start time is due to waiting for I/O. (13.1 seconds waiting for I/O as opposed to 3.6 seconds on CPU.) Running the script on a warm start of the StarOffice software reveals that page caching has eliminated the I/O time , as shown in the following example output: Time breakdown (milliseconds): <I/O wait> 0 <on cpu> 2860 I/O wait breakdown (milliseconds): temp 0 soffice.tmp 0 <unknown> 0 Office 0 The cold start output shows that the file applicat.rdb accounts for more I/O wait time than any other file. This result is presumably due to many I/Os to the file. To explore the I/Os performed to this file, you can use the following D script: io:::start /execname == "soffice.bin" && args[2]->fi_name == "applicat.rdb"/ { @ = lquantize(args[2]->fi_offset != -1 ? args[2]->fi_offset / (1000 * 1024) : -1, 0, 1000); } This script uses the fi_offset field of the fileinfo_t structure to understand which parts of the file are being accessed, at the granularity of a megabyte. Running this script during a cold start of the StarOffice software results in output similar to the following example: # dtrace -s ./applicat.d dtrace: script './applicat.d' matched 4 probes ^C value ------------- Distribution ------------ count < 0 | 0 0 |@@@ 28 1 |@@ 17 2 |@@@@ 35 3 |@@@@@@@@@ 72 4 |@@@@@@@@@@ 78 5 |@@@@@@@@ 65 6 | 0 This output indicates that only the first six megabytes of the file are accessed, perhaps because the file is six megabytes in size. The output also indicates that the entire file is not accessed. If you wanted to improve the cold start time of StarOffice, you might want to understand the access pattern of the file. If the needed sections of the file could be largely contiguous, one way to improve StarOffice cold start time might be to have a scout thread run ahead of the application, inducing the I/O to the file before it's needed. (This approach is particularly straightforward if the file is accessed using mmap(2).) However, the approximately 1.6 seconds that this strategy would gain in cold start time does not merit the additional complexity and maintenance burden in the application. Either way, the data gathered with the io provider allows a precise understanding of the benefit that such work could ultimately deliver. |
||
|